
Vertex Cover in Bipartite Graphs and k-partite Hypergraphs1

• In this note, we describe a randomized rounding algorithm which solves the minimum cost vertex
cover problem exactly in bipartite graphs. This algorithm is then generalized to give a 3

2 -approximation
for minimum cost vertex cover in a tri-partite 3-hypergraph. Indeed, the generalization works for k-
partite hypergraphs as well, but we stick to 3 for exposition purposes and leave the generalization to
3 as an exercise.

• Vertex covers in graphs and hypergraphs. A hypergraph H = (V,E) is a generalization of graphs
where a (hyper)-edge e ∈ E is an arbitrary subset of V (instead of being just a pair). A hypergraph
is k-uniform if |e| = k for every e ∈ E. Thus, a graph is a 2-hypergraph. A hypergraph is k-partite
if the vertex set can be partitioned into k-parts V = V1 ∪ V2 ∪ · · · ∪ Vk such that for every edge
e ∈ E, |e ∩ Vi| ≤ 1 for all 1 ≤ i ≤ k. In plain English, every edge has at most one vertex from
each part. A k-partite k-uniform hypergraph must satisfy the above inequality with equality for all i.
This generalizes bipartite graphs. A vertex cover C ⊆ V is one which hits every edge; for all e ∈ E,
e ∩ C 6= ∅. The vertex cover problem in graph/hypergraph is to find the smallest cost vertex cover,
when each vertex v is associated with a non-negative cost cv.

• LP-relaxation. The algorithm is a rounding algorithm for the following standard LP.

opt ≤ lp(G) := minimize
∑
v∈V

cvzv (VC-LP)∑
v∈e

zv ≥ 1, ∀e ∈ E (1)

0 ≤ zv ≤ 1, ∀v ∈ V (2)

Note that the above LP is oblivious to the fact that the graph/hypergraph is k-partite or k-uniform.
The rounding algorithm will use the k-partition.

• The Bipartite Graph case. Before describing the hypergrap case, let’s see the randomized algorithm
for the graph case. Let V = V1 ∪ V2.

1: procedure RANDOMIZED BIPARTITE VC(G = (V,E), c):
2: Solve (VC-LP) to obtain zv for every vertex.
3: Sample r ∈ [0, 1] uniformly at random.
4: For every vertex v ∈ V1, add v to C if zv ≥ r.
5: For every vertex v ∈ V2, add v to C if zv ≥ 1− r.
6: return C.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 18th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!
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Theorem 1. RANDOMIZED BIPARTITE VC returns a subset C which is a vertex cover with
probability 1 and Exp[c(C)] = lp.

Proof. For any edge (u,w) with u ∈ V1 and w ∈ V2, we have C ∩ {u,w} = ∅ only if zu < r and
zw < 1− r. However, this contradicts zu+ zw ≥ 1. Therefore, C is a vertex cover with probability 1.

Furthermore, for any u ∈ V1, the probability u ∈ C is precisely the probability r ∈ [0, zu]. Thus
Pr[u ∈ C] = zv since r is uniformly at random chosen in [0, 1] and thus the probability is the
ratio of the lengths. Similarly, for any w ∈ V2, the probability w ∈ C is precisely the probability
r ∈ [1 − zw, 1]. Thus Pr[w ∈ C] = zw. Thus, Exp[cost(C)] =

∑
v∈V1∪V2

cv Pr[v ∈ C] =∑
v∈V1∪V2

cvzv = lp.

Remark: Note that the cost of C can never be less than lp otherwise we would get a vertex cover
of cost < lp ≤ opt. This means that any solution returned, irrespective of r, must be of cost lp,
and lp must equal opt. Thus, randomness isn’t necessary at all! And furthermore, (VC-LP) has
integrality gap 1 when G is a bipartite graph. This can be proved in many ways, but the above is
a really slick proof.

• Generalizing to hypergraphs. Before we proceed to the hypergraph case, let’s understand what hap-
pened above. We wanted to choose two (since the graph was bi-partite) coupled random variables
(r1, r2) with the following plan : (a) for every vertex v, we put it in the cover only if and only if
zv ≥ ri, (b) the variable ri is uniform in some interval [0, α] such that the probability of v being in the
solution can then be analyzed to be 1/α, and (c) for every edge to be covered, we wanted r1 + r2 ≤ 1
with probability 1; this would imply the random set we pick is a cover with probability 1 since the z’s
sum to at least 1. We obtained this by selecting r ∈ [0, 1] and setting r1 = r and r2 = 1− r, both of
which are uniform in [0, 1].

We follow the same scheme for hypergraphs. We limit our discussion to tri-partite 3-uniform hy-
pergraphs and we give a 3

2 -approximation. However, the same ideas give a k/2-approximation for
k-partite k-uniform hypergraphs. To make the scheme precise, here is a definition.

Definition 1 (Nice Distribuition). A distribution (r1, r2, r3) of is called a nice distribution D if (a)
the marginal distribution of each ri is uniform in

[
0, 23
]
, and (b) r1 + r2 + r3 = 1 with probability 1.

It is not immediately clear nice distributions exist. In the next bullet point we will show one explicit
nice distribution. Before doing so, let us see that they imply a 3/2-approximation for the minimum
cost vertex cover problem in tri-partite 3-hypergraphs.
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1: procedure RANDOMIZED TRIPARTITE 3HYPVC(Tripartite 3-regular hypergraph G =
(V1 ∪ V2 ∪ V3, E), cv):

2: . Assume access to nice distribution D.
3: Solve (VC-LP) to obtain zv for every vertex.
4: Sample (r1, r2, r3) ∼ D.
5: For every vertex v ∈ Vi, add v to C if zv ≥ ri.
6: return C.

Theorem 2. RANDOMIZED TRIPARTITE 3HYPVC returns a subset C which is a vertex cover
with probability 1 and Exp[c(C)] ≤ 3

2 · lp.

Proof. For any edge e = (v1, v2, v3), C ∩ e = ∅ implies
∑3

i=1 zvi <
∑3

i=1 ri, but since the latter
is = 1 we get a contradiction that z’s formed a feasible solution to the LP. Thus, C is a vertex cover
with probability 1. Furthemore, for any 1 ≤ i ≤ 3 and any v ∈ Vi, we get that Pr[v ∈ C] =
Pr[ri ∈ [0, zv]]. Since the marginal of ri is uniform in [0, 23 ], this probability is at most zv

2/3 = 3zv
2 .

Note that if zv > 2/3, then we get a strict inequality, otherwise, we get an equality. Therefore, Thus,
Exp[c(C)] ≤

∑
v∈V1∪V2∪V3

cv Pr[v ∈ C] ≤ 3
2 ·
∑

v∈V1∪V2∪V3
cvzv = 3lp

2 .

• Nice distributions. We now describe one nice distribution. This, by any means, is not the only way to
design one.

– Sample r ∈ [0, 23 ] and set r1 ← r.

– If r ≤ 1
3 , set (r2, r3)←

(
1
3 + r, 23 − 2r

)
.

– Else, if 1
3 < r ≤ 2

3 , set (r2, r3)←
(
r − 1

3 ,
4
3 − 2r

)
.

– Return (r1, r2, r3).

Lemma 1. The above distribution (r1, r2, r3) is a nice distribution.

Proof. By design, r1 + r2 + r3 = 1 with probability 1. Also, by design, r1 is distributed uniformly in
[0, 23 ]. We need argue that r2 and r3 are uniformly distributed in [0, 23 ].

Fix an x ∈ [0, 2/3]. We claim that Pr[ri ≤ x] = x
2/3 for i = 2, 3. Let’s take i = 2 first. Case 1:

x ≤ 1
3 . Then r2 ≤ x if and only if r > 1/3 (otherwise r2 > 1/3) and r2 = r − 1

3 ≤ x. That is,
1
3 < r ≤ 1

3 + x. And this probability is precisely x
2/3 . Case 2: x > 1

3 . Then r2 ≤ x if r > 1/3 (for

then r2 = r − 1/3 < 1/3 < x) and if r ≤ x− 1
3 . This probability is x− 1

3
+ 1

3
2/3 = x

2/3 .

We leave the similar calculation about the cdf of r3 as an exercise for the reader.

Exercise: KK Show a k
2 -approximation for the minimum cost vertex cover problem in k-partite

k-uniform hypergraphs. To do so, first generalize the notion of “nice distributions”. Then use the
fact that nice distributions exist for k = 2 and k = 3 to generalize for all k. Hint: for even k,
just the k = 2 case is enough.
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Notes

The above result is an old theorem of Lovasz [3] from his doctoral thesis. This thesis, unfortunately, is
hard to find and presumably in Hungarian. The presentation here follows from the paper [1] by Aharoni,
Holzman, and Krivelevich. The latter paper also gives an integrality gap example; more precisely, for any
ε > 0, they describe a hypergraph for which the smallest vertex cover is of size ≥

(
k
2 − ε

)
lp. Inspired

by this example, the paper [2] by Guruswami, Sachdeva, and Saket showed it is UGC-hard to obtain an
(k/2− ε)-approximation, and indeed NP-hard to obtain an (k2 − 1+ 1

2k − ε)-approximation, for any ε > 0.
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